3.2.85 \(\int \frac {x^{9/2} (A+B x^2)}{b x^2+c x^4} \, dx\) [185]

3.2.85.1 Optimal result
3.2.85.2 Mathematica [A] (verified)
3.2.85.3 Rubi [A] (verified)
3.2.85.4 Maple [A] (verified)
3.2.85.5 Fricas [C] (verification not implemented)
3.2.85.6 Sympy [F(-1)]
3.2.85.7 Maxima [A] (verification not implemented)
3.2.85.8 Giac [A] (verification not implemented)
3.2.85.9 Mupad [B] (verification not implemented)

3.2.85.1 Optimal result

Integrand size = 26, antiderivative size = 257 \[ \int \frac {x^{9/2} \left (A+B x^2\right )}{b x^2+c x^4} \, dx=-\frac {2 (b B-A c) x^{3/2}}{3 c^2}+\frac {2 B x^{7/2}}{7 c}-\frac {b^{3/4} (b B-A c) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} c^{11/4}}+\frac {b^{3/4} (b B-A c) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} c^{11/4}}+\frac {b^{3/4} (b B-A c) \log \left (\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{2 \sqrt {2} c^{11/4}}-\frac {b^{3/4} (b B-A c) \log \left (\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{2 \sqrt {2} c^{11/4}} \]

output
-2/3*(-A*c+B*b)*x^(3/2)/c^2+2/7*B*x^(7/2)/c-1/2*b^(3/4)*(-A*c+B*b)*arctan( 
1-c^(1/4)*2^(1/2)*x^(1/2)/b^(1/4))/c^(11/4)*2^(1/2)+1/2*b^(3/4)*(-A*c+B*b) 
*arctan(1+c^(1/4)*2^(1/2)*x^(1/2)/b^(1/4))/c^(11/4)*2^(1/2)+1/4*b^(3/4)*(- 
A*c+B*b)*ln(b^(1/2)+x*c^(1/2)-b^(1/4)*c^(1/4)*2^(1/2)*x^(1/2))/c^(11/4)*2^ 
(1/2)-1/4*b^(3/4)*(-A*c+B*b)*ln(b^(1/2)+x*c^(1/2)+b^(1/4)*c^(1/4)*2^(1/2)* 
x^(1/2))/c^(11/4)*2^(1/2)
 
3.2.85.2 Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.59 \[ \int \frac {x^{9/2} \left (A+B x^2\right )}{b x^2+c x^4} \, dx=\frac {2 x^{3/2} \left (-7 b B+7 A c+3 B c x^2\right )}{21 c^2}-\frac {b^{3/4} (b B-A c) \arctan \left (\frac {\sqrt {b}-\sqrt {c} x}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}\right )}{\sqrt {2} c^{11/4}}-\frac {b^{3/4} (b B-A c) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{\sqrt {2} c^{11/4}} \]

input
Integrate[(x^(9/2)*(A + B*x^2))/(b*x^2 + c*x^4),x]
 
output
(2*x^(3/2)*(-7*b*B + 7*A*c + 3*B*c*x^2))/(21*c^2) - (b^(3/4)*(b*B - A*c)*A 
rcTan[(Sqrt[b] - Sqrt[c]*x)/(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])])/(Sqrt[2]*c 
^(11/4)) - (b^(3/4)*(b*B - A*c)*ArcTanh[(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])/ 
(Sqrt[b] + Sqrt[c]*x)])/(Sqrt[2]*c^(11/4))
 
3.2.85.3 Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 258, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {9, 363, 262, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{9/2} \left (A+B x^2\right )}{b x^2+c x^4} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {x^{5/2} \left (A+B x^2\right )}{b+c x^2}dx\)

\(\Big \downarrow \) 363

\(\displaystyle \frac {2 B x^{7/2}}{7 c}-\frac {(b B-A c) \int \frac {x^{5/2}}{c x^2+b}dx}{c}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {2 B x^{7/2}}{7 c}-\frac {(b B-A c) \left (\frac {2 x^{3/2}}{3 c}-\frac {b \int \frac {\sqrt {x}}{c x^2+b}dx}{c}\right )}{c}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 B x^{7/2}}{7 c}-\frac {(b B-A c) \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \int \frac {x}{c x^2+b}d\sqrt {x}}{c}\right )}{c}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {2 B x^{7/2}}{7 c}-\frac {(b B-A c) \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\int \frac {\sqrt {c} x+\sqrt {b}}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{c}\right )}{c}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 B x^{7/2}}{7 c}-\frac {(b B-A c) \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{c}\right )}{c}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 B x^{7/2}}{7 c}-\frac {(b B-A c) \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{c}\right )}{c}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 B x^{7/2}}{7 c}-\frac {(b B-A c) \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{c}\right )}{c}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 B x^{7/2}}{7 c}-\frac {(b B-A c) \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{c}\right )}{c}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 B x^{7/2}}{7 c}-\frac {(b B-A c) \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{c}\right )}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 B x^{7/2}}{7 c}-\frac {(b B-A c) \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt [4]{b} \sqrt {c}}}{2 \sqrt {c}}\right )}{c}\right )}{c}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 B x^{7/2}}{7 c}-\frac {(b B-A c) \left (\frac {2 x^{3/2}}{3 c}-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{c}\right )}{c}\)

input
Int[(x^(9/2)*(A + B*x^2))/(b*x^2 + c*x^4),x]
 
output
(2*B*x^(7/2))/(7*c) - ((b*B - A*c)*((2*x^(3/2))/(3*c) - (2*b*((-(ArcTan[1 
- (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4))) + ArcTan[1 
 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[c 
]) - (-1/2*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(Sqr 
t[2]*b^(1/4)*c^(1/4)) + Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sq 
rt[c]*x]/(2*Sqrt[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[c])))/c))/c
 

3.2.85.3.1 Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 363
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x 
_Symbol] :> Simp[d*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(b*e*(m + 2*p + 3))), 
 x] - Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(b*(m + 2*p + 3))   Int[(e*x)^ 
m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b*c - a*d 
, 0] && NeQ[m + 2*p + 3, 0]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.2.85.4 Maple [A] (verified)

Time = 1.77 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.54

method result size
risch \(\frac {2 x^{\frac {3}{2}} \left (3 B c \,x^{2}+7 A c -7 B b \right )}{21 c^{2}}-\frac {b \left (A c -B b \right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{4 c^{3} \left (\frac {b}{c}\right )^{\frac {1}{4}}}\) \(140\)
derivativedivides \(\frac {\frac {2 B c \,x^{\frac {7}{2}}}{7}+\frac {2 \left (A c -B b \right ) x^{\frac {3}{2}}}{3}}{c^{2}}-\frac {b \left (A c -B b \right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{4 c^{3} \left (\frac {b}{c}\right )^{\frac {1}{4}}}\) \(142\)
default \(\frac {\frac {2 B c \,x^{\frac {7}{2}}}{7}+\frac {2 \left (A c -B b \right ) x^{\frac {3}{2}}}{3}}{c^{2}}-\frac {b \left (A c -B b \right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{4 c^{3} \left (\frac {b}{c}\right )^{\frac {1}{4}}}\) \(142\)

input
int(x^(9/2)*(B*x^2+A)/(c*x^4+b*x^2),x,method=_RETURNVERBOSE)
 
output
2/21*x^(3/2)*(3*B*c*x^2+7*A*c-7*B*b)/c^2-1/4*b*(A*c-B*b)/c^3/(1/c*b)^(1/4) 
*2^(1/2)*(ln((x-(1/c*b)^(1/4)*x^(1/2)*2^(1/2)+(1/c*b)^(1/2))/(x+(1/c*b)^(1 
/4)*x^(1/2)*2^(1/2)+(1/c*b)^(1/2)))+2*arctan(2^(1/2)/(1/c*b)^(1/4)*x^(1/2) 
+1)+2*arctan(2^(1/2)/(1/c*b)^(1/4)*x^(1/2)-1))
 
3.2.85.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 749, normalized size of antiderivative = 2.91 \[ \int \frac {x^{9/2} \left (A+B x^2\right )}{b x^2+c x^4} \, dx=-\frac {21 \, c^{2} \left (-\frac {B^{4} b^{7} - 4 \, A B^{3} b^{6} c + 6 \, A^{2} B^{2} b^{5} c^{2} - 4 \, A^{3} B b^{4} c^{3} + A^{4} b^{3} c^{4}}{c^{11}}\right )^{\frac {1}{4}} \log \left (c^{8} \left (-\frac {B^{4} b^{7} - 4 \, A B^{3} b^{6} c + 6 \, A^{2} B^{2} b^{5} c^{2} - 4 \, A^{3} B b^{4} c^{3} + A^{4} b^{3} c^{4}}{c^{11}}\right )^{\frac {3}{4}} - {\left (B^{3} b^{5} - 3 \, A B^{2} b^{4} c + 3 \, A^{2} B b^{3} c^{2} - A^{3} b^{2} c^{3}\right )} \sqrt {x}\right ) - 21 i \, c^{2} \left (-\frac {B^{4} b^{7} - 4 \, A B^{3} b^{6} c + 6 \, A^{2} B^{2} b^{5} c^{2} - 4 \, A^{3} B b^{4} c^{3} + A^{4} b^{3} c^{4}}{c^{11}}\right )^{\frac {1}{4}} \log \left (i \, c^{8} \left (-\frac {B^{4} b^{7} - 4 \, A B^{3} b^{6} c + 6 \, A^{2} B^{2} b^{5} c^{2} - 4 \, A^{3} B b^{4} c^{3} + A^{4} b^{3} c^{4}}{c^{11}}\right )^{\frac {3}{4}} - {\left (B^{3} b^{5} - 3 \, A B^{2} b^{4} c + 3 \, A^{2} B b^{3} c^{2} - A^{3} b^{2} c^{3}\right )} \sqrt {x}\right ) + 21 i \, c^{2} \left (-\frac {B^{4} b^{7} - 4 \, A B^{3} b^{6} c + 6 \, A^{2} B^{2} b^{5} c^{2} - 4 \, A^{3} B b^{4} c^{3} + A^{4} b^{3} c^{4}}{c^{11}}\right )^{\frac {1}{4}} \log \left (-i \, c^{8} \left (-\frac {B^{4} b^{7} - 4 \, A B^{3} b^{6} c + 6 \, A^{2} B^{2} b^{5} c^{2} - 4 \, A^{3} B b^{4} c^{3} + A^{4} b^{3} c^{4}}{c^{11}}\right )^{\frac {3}{4}} - {\left (B^{3} b^{5} - 3 \, A B^{2} b^{4} c + 3 \, A^{2} B b^{3} c^{2} - A^{3} b^{2} c^{3}\right )} \sqrt {x}\right ) - 21 \, c^{2} \left (-\frac {B^{4} b^{7} - 4 \, A B^{3} b^{6} c + 6 \, A^{2} B^{2} b^{5} c^{2} - 4 \, A^{3} B b^{4} c^{3} + A^{4} b^{3} c^{4}}{c^{11}}\right )^{\frac {1}{4}} \log \left (-c^{8} \left (-\frac {B^{4} b^{7} - 4 \, A B^{3} b^{6} c + 6 \, A^{2} B^{2} b^{5} c^{2} - 4 \, A^{3} B b^{4} c^{3} + A^{4} b^{3} c^{4}}{c^{11}}\right )^{\frac {3}{4}} - {\left (B^{3} b^{5} - 3 \, A B^{2} b^{4} c + 3 \, A^{2} B b^{3} c^{2} - A^{3} b^{2} c^{3}\right )} \sqrt {x}\right ) - 4 \, {\left (3 \, B c x^{3} - 7 \, {\left (B b - A c\right )} x\right )} \sqrt {x}}{42 \, c^{2}} \]

input
integrate(x^(9/2)*(B*x^2+A)/(c*x^4+b*x^2),x, algorithm="fricas")
 
output
-1/42*(21*c^2*(-(B^4*b^7 - 4*A*B^3*b^6*c + 6*A^2*B^2*b^5*c^2 - 4*A^3*B*b^4 
*c^3 + A^4*b^3*c^4)/c^11)^(1/4)*log(c^8*(-(B^4*b^7 - 4*A*B^3*b^6*c + 6*A^2 
*B^2*b^5*c^2 - 4*A^3*B*b^4*c^3 + A^4*b^3*c^4)/c^11)^(3/4) - (B^3*b^5 - 3*A 
*B^2*b^4*c + 3*A^2*B*b^3*c^2 - A^3*b^2*c^3)*sqrt(x)) - 21*I*c^2*(-(B^4*b^7 
 - 4*A*B^3*b^6*c + 6*A^2*B^2*b^5*c^2 - 4*A^3*B*b^4*c^3 + A^4*b^3*c^4)/c^11 
)^(1/4)*log(I*c^8*(-(B^4*b^7 - 4*A*B^3*b^6*c + 6*A^2*B^2*b^5*c^2 - 4*A^3*B 
*b^4*c^3 + A^4*b^3*c^4)/c^11)^(3/4) - (B^3*b^5 - 3*A*B^2*b^4*c + 3*A^2*B*b 
^3*c^2 - A^3*b^2*c^3)*sqrt(x)) + 21*I*c^2*(-(B^4*b^7 - 4*A*B^3*b^6*c + 6*A 
^2*B^2*b^5*c^2 - 4*A^3*B*b^4*c^3 + A^4*b^3*c^4)/c^11)^(1/4)*log(-I*c^8*(-( 
B^4*b^7 - 4*A*B^3*b^6*c + 6*A^2*B^2*b^5*c^2 - 4*A^3*B*b^4*c^3 + A^4*b^3*c^ 
4)/c^11)^(3/4) - (B^3*b^5 - 3*A*B^2*b^4*c + 3*A^2*B*b^3*c^2 - A^3*b^2*c^3) 
*sqrt(x)) - 21*c^2*(-(B^4*b^7 - 4*A*B^3*b^6*c + 6*A^2*B^2*b^5*c^2 - 4*A^3* 
B*b^4*c^3 + A^4*b^3*c^4)/c^11)^(1/4)*log(-c^8*(-(B^4*b^7 - 4*A*B^3*b^6*c + 
 6*A^2*B^2*b^5*c^2 - 4*A^3*B*b^4*c^3 + A^4*b^3*c^4)/c^11)^(3/4) - (B^3*b^5 
 - 3*A*B^2*b^4*c + 3*A^2*B*b^3*c^2 - A^3*b^2*c^3)*sqrt(x)) - 4*(3*B*c*x^3 
- 7*(B*b - A*c)*x)*sqrt(x))/c^2
 
3.2.85.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^{9/2} \left (A+B x^2\right )}{b x^2+c x^4} \, dx=\text {Timed out} \]

input
integrate(x**(9/2)*(B*x**2+A)/(c*x**4+b*x**2),x)
 
output
Timed out
 
3.2.85.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 214, normalized size of antiderivative = 0.83 \[ \int \frac {x^{9/2} \left (A+B x^2\right )}{b x^2+c x^4} \, dx=\frac {{\left (B b^{2} - A b c\right )} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} - \frac {\sqrt {2} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {1}{4}} c^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {1}{4}} c^{\frac {3}{4}}}\right )}}{4 \, c^{2}} + \frac {2 \, {\left (3 \, B c x^{\frac {7}{2}} - 7 \, {\left (B b - A c\right )} x^{\frac {3}{2}}\right )}}{21 \, c^{2}} \]

input
integrate(x^(9/2)*(B*x^2+A)/(c*x^4+b*x^2),x, algorithm="maxima")
 
output
1/4*(B*b^2 - A*b*c)*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) 
 + 2*sqrt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(sqrt(b)*sqrt(c))*sqrt(c 
)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) - 2*sqrt(c)*sq 
rt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(sqrt(b)*sqrt(c))*sqrt(c)) - sqrt(2)*lo 
g(sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/(b^(1/4)*c^(3/4)) 
 + sqrt(2)*log(-sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/(b^ 
(1/4)*c^(3/4)))/c^2 + 2/21*(3*B*c*x^(7/2) - 7*(B*b - A*c)*x^(3/2))/c^2
 
3.2.85.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.03 \[ \int \frac {x^{9/2} \left (A+B x^2\right )}{b x^2+c x^4} \, dx=\frac {\sqrt {2} {\left (\left (b c^{3}\right )^{\frac {3}{4}} B b - \left (b c^{3}\right )^{\frac {3}{4}} A c\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{2 \, c^{5}} + \frac {\sqrt {2} {\left (\left (b c^{3}\right )^{\frac {3}{4}} B b - \left (b c^{3}\right )^{\frac {3}{4}} A c\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{2 \, c^{5}} - \frac {\sqrt {2} {\left (\left (b c^{3}\right )^{\frac {3}{4}} B b - \left (b c^{3}\right )^{\frac {3}{4}} A c\right )} \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{4 \, c^{5}} + \frac {\sqrt {2} {\left (\left (b c^{3}\right )^{\frac {3}{4}} B b - \left (b c^{3}\right )^{\frac {3}{4}} A c\right )} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{4 \, c^{5}} + \frac {2 \, {\left (3 \, B c^{6} x^{\frac {7}{2}} - 7 \, B b c^{5} x^{\frac {3}{2}} + 7 \, A c^{6} x^{\frac {3}{2}}\right )}}{21 \, c^{7}} \]

input
integrate(x^(9/2)*(B*x^2+A)/(c*x^4+b*x^2),x, algorithm="giac")
 
output
1/2*sqrt(2)*((b*c^3)^(3/4)*B*b - (b*c^3)^(3/4)*A*c)*arctan(1/2*sqrt(2)*(sq 
rt(2)*(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/c^5 + 1/2*sqrt(2)*((b*c^3)^(3/ 
4)*B*b - (b*c^3)^(3/4)*A*c)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) - 2*s 
qrt(x))/(b/c)^(1/4))/c^5 - 1/4*sqrt(2)*((b*c^3)^(3/4)*B*b - (b*c^3)^(3/4)* 
A*c)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/c^5 + 1/4*sqrt(2)*(( 
b*c^3)^(3/4)*B*b - (b*c^3)^(3/4)*A*c)*log(-sqrt(2)*sqrt(x)*(b/c)^(1/4) + x 
 + sqrt(b/c))/c^5 + 2/21*(3*B*c^6*x^(7/2) - 7*B*b*c^5*x^(3/2) + 7*A*c^6*x^ 
(3/2))/c^7
 
3.2.85.9 Mupad [B] (verification not implemented)

Time = 9.11 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.36 \[ \int \frac {x^{9/2} \left (A+B x^2\right )}{b x^2+c x^4} \, dx=x^{3/2}\,\left (\frac {2\,A}{3\,c}-\frac {2\,B\,b}{3\,c^2}\right )+\frac {2\,B\,x^{7/2}}{7\,c}+\frac {{\left (-b\right )}^{3/4}\,\mathrm {atan}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )\,\left (A\,c-B\,b\right )}{c^{11/4}}+\frac {{\left (-b\right )}^{3/4}\,\mathrm {atan}\left (\frac {c^{1/4}\,\sqrt {x}\,1{}\mathrm {i}}{{\left (-b\right )}^{1/4}}\right )\,\left (A\,c-B\,b\right )\,1{}\mathrm {i}}{c^{11/4}} \]

input
int((x^(9/2)*(A + B*x^2))/(b*x^2 + c*x^4),x)
 
output
x^(3/2)*((2*A)/(3*c) - (2*B*b)/(3*c^2)) + (2*B*x^(7/2))/(7*c) + ((-b)^(3/4 
)*atan((c^(1/4)*x^(1/2))/(-b)^(1/4))*(A*c - B*b))/c^(11/4) + ((-b)^(3/4)*a 
tan((c^(1/4)*x^(1/2)*1i)/(-b)^(1/4))*(A*c - B*b)*1i)/c^(11/4)